The η − μ / Inverse Gamma Composite Fading Model Seong

نویسندگان

  • Seong Ki Yoo
  • Paschalis C. Sofotasios
  • Simon L. Cotton
  • Michail Matthaiou
  • Mikko Valkama
  • George K. Karagiannidis
چکیده

In this paper we propose a new composite fading model which assumes that the mean signal power of an η−μ signal envelope follows an inverse gamma distribution. The inverse gamma distribution has a simple relationship with the gamma distribution and can be used to model shadowed fading due to its semi heavy-tailed characteristics. To demonstrate the utility of the new η−μ / inverse gamma composite fading model, we investigate the characteristics of the shadowed fading behavior observed in body centric communications channels which are known to be susceptible to shadowing effects, particularly generated by the human body. It is shown that the η−μ / inverse gamma composite fading model provided an excellent fit to the measurement data. Moreover, using Kullback-Leibler divergence, the η−μ / inverse gamma composite fading model was found to provide a better fit to the measured data than the κ−μ / inverse gamma composite fading model, for the communication scenarios considered here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gamma Composite Fading Models: Fundamental Statistics and Empirical Validation

The κ-μ / inverse gamma and η-μ / inverse gamma composite fading models are presented and extensively investigated in this paper. We derive closed-form expressions for the fundamental statistics of the κ-μ / inverse gamma composite fading model, such as the probability density function (PDF), cumulative distribution function (CDF), moment generating function (MGF), higher order moments and amou...

متن کامل

The κ − μ / Inverse Gamma Fading Model Seong

Statistical distributions have been extensively used in modeling fading effects in conventional and modern wireless communications. In the present work, we propose a novel κ− μ composite shadowed fading model, which is based on the valid assumption that the mean signal power follows the inverse gamma distribution instead of the lognormal or commonly used gamma distributions. This distribution h...

متن کامل

The κ − μ / Inverse Gamma Fading Model

Statistical distributions have been extensively used in modeling fading effects in conventional and modern wireless communications. In the present work, we propose a novel κ− μ composite shadowed fading model, which is based on the valid assumption that the mean signal power follows the inverse gamma distribution instead of the lognormal or commonly used gamma distributions. This distribution h...

متن کامل

On the $\eta-\mu$/gamma and the $\lambda-\mu$/gamma Composite Distributions

This work is devoted to the formulation and derivation of the η−μ/gamma and λ−μ/gamma distributions which correspond to physical fading models. These distributions are composite and are based on the η − μ and λ− μ generalized multipath models, respectively, and the gamma shadowing model. Novel analytic expressions are derived for the corresponding envelope probability density functions. Importa...

متن کامل

Unified Representation of κ − μ / Gamma , η − μ / Gamma , and α − μ / Gamma Fading Channels Using a Mixture Gamma Distribution with Applications to Energy Detection

In this letter, the performance of an energy detection (ED) is analysed over different composite generalized multipath/gamma fading channels, namely, κ−μ/gamma, η−μ/gamma, and α − μ/gamma. The mixture gamma (MG) distribution is employed to approximate with high accuracy the signal-to-noiseratio (SNR) for all these channels. General, mathematically tractable, and unified analytic expressions for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015